Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell Death Differ ; 31(5): 544-557, 2024 May.
Article in English | MEDLINE | ID: mdl-38514848

ABSTRACT

The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.


Subject(s)
COVID-19 , Disease Models, Animal , Fas Ligand Protein , SARS-CoV-2 , COVID-19/pathology , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , COVID-19/mortality , Animals , Fas Ligand Protein/metabolism , Mice , Humans , Lung/pathology , Lung/virology , Lung/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice, Inbred C57BL , Female , Male , Inflammation/pathology , Inflammation/metabolism , Bronchoalveolar Lavage Fluid , Macrophages/metabolism , Macrophages/pathology
2.
Pathogens ; 12(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38133284

ABSTRACT

Scrapie, a naturally occurring prion disease affecting goats and sheep, comprises classical and atypical forms, with classical scrapie being the archetype of transmissible spongiform encephalopathies. This review explores the challenges of scrapie diagnosis and the utility of various biomarkers and their potential implications for human prion diseases. Understanding these biomarkers in the context of scrapie may enable earlier prion disease diagnosis in humans, which is crucial for effective intervention. Research on scrapie biomarkers bridges the gap between veterinary and human medicine, offering hope for the early detection and improved management of prion diseases.

3.
Front Mol Neurosci ; 16: 1175364, 2023.
Article in English | MEDLINE | ID: mdl-37152434

ABSTRACT

Chronic accumulation of misfolded proteins such as PrPSc can alter the endoplasmic reticulum homeostasis triggering the unfolded protein response (UPR). In this pathogenic event, the molecular chaperones play an important role. Several reports in humans and animals have suggested that neurodegeneration is related to endoplasmic reticulum stress in diseases caused by the accumulation of misfolded proteins. In this study, we investigated the expression of three endoplasmic reticulum stress markers: PERK (protein kinase R-like endoplasmic reticulum kinase), BiP (binding immunoglobulin protein), and PDI (Protein Disulfide Isomerase). In addition, we evaluated the accumulation of ubiquitin as a marker for protein degradation mediated by the proteasome. These proteins were studied in brain tissues of sheep affected by scrapie in clinical and preclinical stages of the disease. Results were compared with those observed in healthy controls. Scrapie-infected sheep showed significant higher levels of PERK, BiP/Grp78 and PDI than healthy animals. As we observed before in models of spontaneous prion disease, PDI was the most altered ER stress marker between scrapie-infected and healthy sheep. Significantly increased intraneuronal and neuropil ubiquitinated deposits were observed in certain brain areas in scrapie-affected animals compared to controls. Our results suggest that the neuropathological and neuroinflammatory phenomena that develop in prion diseases cause endoplasmic reticulum stress in brain cells triggering the UPR. In addition, the significantly higher accumulation of ubiquitin aggregates in scrapie-affected animals suggests an impairment of the ubiquitin-proteasome system in natural scrapie. Therefore, these proteins may contribute as biomarkers and/or therapeutic targets for prion diseases.

4.
Vet Pathol ; 60(1): 115-122, 2023 01.
Article in English | MEDLINE | ID: mdl-36384340

ABSTRACT

Trigonella foenum-graecum (fenugreek) is a legume widely used as a food supplement in humans and less frequently in ruminants. Toxicity has been described sporadically in ruminants grazing mature fenugreek plants or stubble; however, the pathological features are unclear. This report describes a natural outbreak of intoxication in cattle fed fenugreek straw and the experimental reproduction using 8 sheep and 8 goats. Affected cattle presented clinical signs approximately 1 month after consuming the straw and 100 of 400 cattle (25%) were affected, of which 60 of 100 (60%) died or were euthanized. Clinical signs were characterized by proprioceptive positioning defects with abnormal postures and weakness of hindlimbs. Forelimbs were also affected in severely affected animals, and cattle became recumbent. Locomotion was characterized by trembling, and some cattle showed high-stepping movements of their forelimbs and knuckled over in their fetlocks. Experimental intoxication induced clinical signs only in sheep and were similar to cattle, although with signs starting in the forelegs. Gross and microscopic lesions were similar in spontaneous and experimental intoxications. Macroscopic changes corresponded with muscular hemorrhages and edema, mainly surrounding the peripheral nerves. Microscopic examination only demonstrated lesions in the distal peripheral nerves, which included edema, hemorrhages, and Wallerian degeneration. Neurofilament immunohistochemistry revealed altered axon labeling and S100 showed a decrease in myelin intensity and loss of its typical compact arrangement around axons. Biochemical and hematological abnormalities included elevated levels of muscle and liver enzymes and thrombocytopenia. These findings indicate that fenugreek straw induces peripheral neuropathy in cattle and sheep, but not in goats.


Subject(s)
Cattle Diseases , Goat Diseases , Peripheral Nervous System Diseases , Sheep Diseases , Trigonella , Humans , Cattle , Sheep , Animals , Trigonella/chemistry , Goats , Reproduction , Peripheral Nervous System Diseases/veterinary , Edema/veterinary , Sheep Diseases/chemically induced
5.
Acta Neuropathol Commun ; 10(1): 179, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36514160

ABSTRACT

Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrPC with I112 polymorphism (TgShI112, 1-2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrPres pattern with a predominant 7-10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrPC), Tg338 (ovine VRQ PrPC), Tg501 (ovine ARQ PrPC), Tg340 (human M129 PrPC), Tg361 (human V129 PrPC), TgVole (bank vole I109 PrPC), bank vole (I109I PrPC), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease.


Subject(s)
Prion Diseases , Prions , Scrapie , Mice , Animals , Sheep , Humans , Scrapie/metabolism , Rodentia/metabolism , Prions/metabolism , Mice, Transgenic , Arvicolinae/metabolism
6.
PLoS Pathog ; 18(10): e1010900, 2022 10.
Article in English | MEDLINE | ID: mdl-36206325

ABSTRACT

The role of the glycosylation status of PrPC in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrPC. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both in vitro and in vivo propagation assays using the non-glycosylated human PrPC-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous in vitro results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrPC is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.


Subject(s)
Creutzfeldt-Jakob Syndrome , Encephalopathy, Bovine Spongiform , Prions , Animals , Sheep , Cattle , Mice , Humans , Swine , Encephalopathy, Bovine Spongiform/pathology , Mice, Transgenic , Brain/pathology , Creutzfeldt-Jakob Syndrome/pathology , Prions/metabolism , Polysaccharides/metabolism , Sheep, Domestic/metabolism
7.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408945

ABSTRACT

Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.


Subject(s)
Neurodegenerative Diseases , Prion Diseases , Scrapie , Animals , Brain/metabolism , Gliosis/pathology , Mice , Neurodegenerative Diseases/metabolism , Prion Diseases/metabolism , Scrapie/metabolism , Sheep , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Transcriptome
8.
Front Vet Sci ; 9: 824677, 2022.
Article in English | MEDLINE | ID: mdl-35252421

ABSTRACT

Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathy (TSE). Scrapie occurs in sheep and goats, which are considered good natural animal models of these TSE. Changes in DNA methylation occur in the central nervous system (CNS) of patients suffering from prion-like neurodegenerative diseases, such as Alzheimer's disease. Nevertheless, potential DNA methylation alterations have not yet been investigated in the CNS of any prion disease model or naturally infected cases, neither in humans nor in animals. Genome-wide DNA methylation patterns were studied in the thalamus obtained from sheep naturally infected with scrapie at a clinical stage (n = 4) and from controls (n = 4) by performing a whole-genome bisulfite sequencing (WGBS) analysis. Ewes carried the scrapie-susceptible ARQ/ARQ PRNP genotype and were sacrificed at a similar age (4-6 years). Although the average genomic methylation levels were similar between the control and the scrapie animals, we identified 8,907 significant differentially methylated regions (DMRs) and 39 promoters (DMPs). Gene Ontology analysis revealed that hypomethylated DMRs were enriched in genes involved in transmembrane transport and cell adhesion, whereas hypermethylated DMRs were related to intracellular signal transduction genes. Moreover, genes highly expressed in specific types of CNS cells and those previously described to be differentially expressed in scrapie brains contained DMRs. Finally, a quantitative PCR (qPCR) validation indicated differences in the expression of five genes (PCDH19, SNCG, WDR45B, PEX1, and CABIN1) that matched the methylation changes observed in the genomic study. Altogether, these results suggest a potential regulatory role of DNA methylation in prion neuropathology.

9.
Sci Rep ; 11(1): 17428, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465826

ABSTRACT

Pigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8-9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


Subject(s)
Brain/pathology , Disease Susceptibility , Encephalopathy, Bovine Spongiform/pathology , PrPSc Proteins/metabolism , Prions/physiology , Scrapie/pathology , Animals , Brain/metabolism , Cattle , Encephalopathy, Bovine Spongiform/metabolism , Encephalopathy, Bovine Spongiform/transmission , Female , Male , Mice , Scrapie/metabolism , Scrapie/transmission , Swine , Swine, Miniature
10.
Pathogens ; 10(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068251

ABSTRACT

Human prion diseases are a group of rare fatal neurodegenerative diseases with sporadic, genetic, and acquired forms. They are neuropathologically characterized by pathological prion protein accumulation, neuronal death, and vacuolation. Classical immunological response has long been known not to play a major in prion diseases; however, gliosis is known to be a common feature although variable in extent and poorly described. In this investigation, astrogliosis and activated microglia in two brain regions were assessed and compared with non-neurologically affected patients in a representative sample across the spectrum of Creutzfeldt-Jakob disease (CJD) forms and subtypes in order to analyze the influence of prion strain on pathological processes. In this report, we choose to focus on features common to all CJD types rather than the diversity among them. Novel pathological changes in both glial cell types were found to be shared by all CJD types. Microglial activation correlated to astrogliosis. Spongiosis, but not pathological prion protein deposition, correlated to both astrogliosis and microgliosis. At the ultrastructural level, astrocytic glial filaments correlated with pathological changes associated with prion disease. These observations confirm that neuroglia play a prominent role in the neurodegenerative process of prion diseases, regardless of the causative prion type.

11.
Animals (Basel) ; 11(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921147

ABSTRACT

Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48-72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.

12.
Biomolecules ; 11(2)2021 02 02.
Article in English | MEDLINE | ID: mdl-33540568

ABSTRACT

The actual role of prion protein-induced glial activation and subsequent cytokine secretion during prion diseases is still incompletely understood. The overall aim of this study is to assess the effect of an anti-inflammatory treatment with dexamethasone on different cytokines released by neuroglial cells that are potentially related to neuroinflammation in natural scrapie. This study emphasizes the complex interactions existent among several pleiotropic neuromodulator peptides and provides a global approach to clarify neuroinflammatory processes in prion diseases. Additionally, an impairment of communication between microglial and astroglial populations mediated by cytokines, mainly IL-1, is suggested. The main novelty of this study is that it is the first one assessing in situ neuroinflammatory activity in relation to chronic anti-inflammatory therapy, gaining relevance because it is based on a natural model. The cytokine profile data would suggest the activation of some neurotoxicity-associated route. Consequently, targeting such a pathway might be a new approach to modify the damaging effects of neuroinflammation.


Subject(s)
Dexamethasone/administration & dosage , Scrapie/drug therapy , Scrapie/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Astrocytes/metabolism , Brain/metabolism , Cytokines/metabolism , Gene Expression Profiling , Immunohistochemistry , Inflammation , Interleukin-1/metabolism , Neuroglia/metabolism , Prion Proteins/metabolism , Prions/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sheep
13.
Int J Mol Sci ; 21(16)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806582

ABSTRACT

A recently published report on chronic dexamethasone treatment for natural scrapie supported the hypothesis of the potential failure of astroglia in the advanced stage of disease. Herein, we aimed to extend the aforementioned study on the effect of this anti-inflammatory therapy to the initial phase of scrapie, with the aim of elucidating the natural neuroinflammatory process occurring in this neurodegenerative disorder. The administration of this glucocorticoid resulted in an outstanding reduction in vacuolation and aberrant protein deposition (nearly null), and an increase in glial activation. Furthermore, evident suppression of IL-1R and IL-6 and the exacerbation of IL-1α, IL-2R, IL-10R and IFNγR were also demonstrated. Consequently, the early stage of the disease is characterized by an intact neuroglial response similar to that of healthy individuals attempting to re-establish homeostasis. A complex network of neuroinflammatory markers is involved from the very early stages of this prion disease, which probably becomes impaired in the more advanced stages. The in vivo animal model used herein provides essential observations on the pathogenesis of natural scrapie, as well as the possibility of establishing neuroglia as potential target cells for anti-inflammatory therapy.


Subject(s)
Brain/immunology , Brain/pathology , Dexamethasone/therapeutic use , Scrapie/drug therapy , Scrapie/immunology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cytokines/metabolism , Female , Gliosis/complications , Gliosis/pathology , Microglia/metabolism , Microglia/pathology , Scrapie/complications , Sheep , Statistics as Topic
14.
Biomolecules ; 10(6)2020 06 15.
Article in English | MEDLINE | ID: mdl-32549330

ABSTRACT

MicroRNAs (miRNAs) may contribute to the development and pathology of many neurodegenerative diseases, including prion diseases. They are also promising biomarker candidates due to their stability in body fluids. We investigated miRNA alterations in a Tg501 mouse model of prion diseases that expresses a transgene encoding the goat prion protein (PRNP). Tg501 mice intracranially inoculated with mouse-adapted goat scrapie were compared with age-matched, mock inoculated controls in preclinical and clinical stages. Small RNA sequencing from the cervical spinal cord indicated that miR-223-3p, miR-151-3p, and miR-144-5p were dysregulated in scrapie-inoculated animals before the onset of symptoms. In clinical-stage animals, 23 significant miRNA alterations were found. These miRNAs were predicted to modify the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including prion disease, extracellular matrix interactions, glutaminergic synapse, axon guidance, and transforming growth factor-beta signaling. MicroRNAs miR-146a-5p (up in cervical spinal cord) and miR-342-3p (down in cervical spinal cord, cerebellum and plasma), both indicated in neurodegenerative diseases earlier, were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Minimal changes observed before the disease onset suggests that most miRNA alterations observed here are driven by advanced prion-associated pathology, possibly limiting their use as diagnostic markers. However, the results encourage further mechanistic studies on miRNA-regulated pathways involved in these neurodegenerative conditions.


Subject(s)
Disease Models, Animal , Goat Diseases/pathology , Mice, Transgenic , MicroRNAs/genetics , Prion Diseases/genetics , Animals , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Goat Diseases/genetics , Goats , Mice , Prion Diseases/pathology , Prion Diseases/veterinary , Sequence Analysis, RNA
15.
Int J Mol Sci ; 21(9)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370224

ABSTRACT

Neuroinflammation has been correlated with the progress of neurodegeneration in many neuropathologies. Although glial cells have traditionally been considered to be protective, the concept of them as neurotoxic cells has recently emerged. Thus, a major unsolved question is the exact role of astroglia and microglia in neurodegenerative disorders. On the other hand, it is well known that glucocorticoids are the first choice to regulate inflammation and, consequently, neuroglial inflammatory activity. The objective of this study was to determine how chronic dexamethasone treatment influences the host immune response and to characterize the beneficial or detrimental role of glial cells. To date, this has not been examined using a natural neurodegenerative model of scrapie. With this aim, immunohistochemical expression of glial markers, prion protein accumulation, histopathological lesions and clinical evolution were compared with those in a control group. The results demonstrated how the complex interaction between glial populations failed to compensate for brain damage in natural conditions, emphasizing the need for using natural models. Additionally, the data showed that modulation of neuroinflammation by anti-inflammatory drugs might become a research focus as a potential therapeutic target for prion diseases, similar to that considered previously for other neurodegenerative disorders classified as prion-like diseases.


Subject(s)
Astrocytes/drug effects , Dexamethasone/pharmacology , Microglia/drug effects , Neuroglia/drug effects , Scrapie/physiopathology , Animals , Anti-Inflammatory Agents/pharmacology , Astrocytes/cytology , Astrocytes/metabolism , Female , Kaplan-Meier Estimate , Microglia/cytology , Microglia/metabolism , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/physiopathology , Neuroglia/metabolism , Prion Proteins/metabolism , Scrapie/diagnosis , Scrapie/metabolism , Sheep
16.
Acta Vet Hung ; 68(1): 1-7, 2020 03.
Article in English | MEDLINE | ID: mdl-32384068

ABSTRACT

The aim of this study was to estimate the prevalence of antimicrobial resistance (AMR) in Escherichia coli from a dog population in Spain and assess specific virulence factors. Susceptibility to 22 antimicrobials was tested along with the production of extended-spectrum ß-lactamases (ESBLs) and AmpC in faecal isolates from 100 dogs. Virulence-related genes associated with attaching and effacing E. coli (eae, Stx1, Stx2) and extraintestinal pathogenic E. coli - ExPEC - (papC, hlyA and cnf1) were detected by PCR. At least one kind of AMR was observed in 73% of the isolates. The highest prevalences corresponded to penicillin (45%), aminoglycoside (40%) and non-extended spectrum cephalosporin (39%) classes. Multidrug resistance (MDR) was observed in 53.4% of the resistant isolates. No resistance to colistin was found. Production of ESBL/AmpC enzymes was detected in 5% of E. coli. Shiga toxin-producing E. coli were not observed, enteropathogenic E. coli were identified in only 12% of them, and ExPEC were found in 25%. Dog faeces can be a source of E. coli strains potentially presenting a threat to humans through their virulence factors or AMR. The non-hygienic keeping of animals may increase the risk of colonisation of such pathogens in humans.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dog Diseases/epidemiology , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/veterinary , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Animals , Dog Diseases/microbiology , Dogs , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Feces/microbiology , Female , Male , Prevalence , Spain/epidemiology , Virulence Factors
17.
Mech Ageing Dev ; 184: 111176, 2019 12.
Article in English | MEDLINE | ID: mdl-31689427

ABSTRACT

Neurodegenerative diseases, such as Alzheimer's and Parkinson's, are considered prion-like disorders because they are all proteinopathies in which aberrant proteins spread throughout the brain during disease progression. The overall aim of this study is to determine how glial cells are commonly involved in the neurodegeneration progress observed in all these pathologies. The suggestion that they are cell types in which prion and prion-like disorders have common behaviour is the hypothesis on which this study is based. Morphological and distribution differences in astroglial and microglial cells in the cerebellum from prion and prion-like disease-affected patients were assessed here by histopathological and immunochemical tools. To our knowledge, this is the first study to focus on the comparative assessment of glial profiles in these human brains. Activated microglial population was demonstrated in both, prion and prion-like disorders, although in higher extent in the first. In astroglial activation, specific patterns of alterations suggesting both degenerative and potentially neuroprotective or restorative stem cell response, were shown to be alternatively shared by cerebella from all disorders studied. Neuro-protective strategies for these disabling disorders are particularly desirable.


Subject(s)
Cerebellum/pathology , Neuroglia/pathology , Prion Diseases/pathology , Prions , Aged , Aged, 80 and over , Astrocytes/pathology , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Microglia/pathology , Middle Aged , Neurodegenerative Diseases/pathology
18.
Vet Microbiol ; 233: 78-84, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31176416

ABSTRACT

Autophagy is a critical physiologic process contributing to the maintenance of cell homeostasis. Autophagy dysfunction has been directly linked to a growing number of neurodegenerative disorders, including prion diseases. However, little is known about the molecular mechanisms underlying autophagic failure and its connection with prion neuropathology. In a previous work we described alterations of this process in the central nervous system (CNS) of sheep naturally infected with classical scrapie, although specific neuronal populations such as Purkinje cells seemed to display an autophagy-related neuroprotective effect against prion toxicity. As atypical scrapie displays a lesion pattern different to the one observed in the classical form, using immunohistochemical analyses, we further investigated herein the role of autophagy in the CNS of sheep experimentally infected with atypical scrapie prions. While ATG5 protein showed a similar distribution in atypical scrapie to that observed in the classical form, expression of LC3-B and LC3-A did not change in any brain region. However, p62, a marker of impaired autophagy, was overexpressed in the most prion-affected areas, including Purkinje cells, which suggests that autophagic activity is deteriorated in the CNS of atypical scrapie and these cells are also susceptible to neurotoxicity and do not exhibit a general defensive mechanism based on autophagy. By comparing data from both clinical scrapie forms, we have demonstrated that autophagy impairment is highly dependent on the neuropathological lesion levels of the brain area analysed and may be implicated in prion neuropathology.


Subject(s)
Autophagy , Brain/pathology , Prions , Scrapie/pathology , Animals , Autophagy-Related Protein 5/genetics , Female , Microtubule-Associated Proteins/genetics , Neurons/pathology , Purkinje Cells/pathology , Sheep , Transcription Factors/genetics
19.
Sci Rep ; 9(1): 1911, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30760781

ABSTRACT

Autophagy is a dynamic cellular mechanism involved in protein and organelle turnover through lysosomal degradation. Autophagy regulation modulates the pathologies associated with many neurodegenerative diseases. Using sheep naturally infected with scrapie as a natural animal model of prion diseases, we investigated the regulation of autophagy in the central nervous system (CNS) during the clinical phase of the disease. We present a gene expression and protein distribution analysis of different autophagy-related markers and investigate their relationship with prion-associated lesions in several areas of the CNS. Gene expression of autophagy markers ATG5 and ATG9 was downregulated in some areas of scrapie brains. In contrast, ATG5 protein accumulates in medulla oblongata and positively correlates with prion deposition and scrapie-related lesions. The accumulation of this protein and p62, a marker of autophagy impairment, suggests that autophagy is decreased in the late phases of the disease. However, the increment of LC3 proteins and the mild expression of p62 in basal ganglia and cerebellum, primarily in Purkinje cells, suggests that autophagy machinery is still intact in less affected areas. We hypothesize that specific cell populations of the CNS may display neuroprotective mechanisms against prion-induced toxicity through the induction of PrPSc clearance by autophagy.


Subject(s)
Autophagic Cell Death , Brain/metabolism , PrPSc Proteins/metabolism , Scrapie/metabolism , Animals , Autophagy-Related Protein 5/metabolism , Brain/pathology , Microtubule-Associated Proteins/metabolism , Scrapie/pathology , Sheep
20.
Medicine (Baltimore) ; 97(15): e0320, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29642165

ABSTRACT

BACKGROUND: Neuroinflammation has recently been proposed to be a major component of neurodegenerative diseases. The aim of this study was to determine how the interaction between microglia and astroglia, which are the primary immune cell populations in the brain, and pathological prion protein (PrPsc) could influence the development and propagation of this neurodegenerative disease. Because a relevant role for glial response in prion disease has been clearly demonstrated in our previous studies using the natural animal model, a similar approach has been taken here using the natural human model. METHODS: A morphological approach has been developed to analyze cerebellar samples from patients with Creutzfeldt-Jakob disease (CJD) in comparison with healthy control cases. Histopathological lesions were assessed, and PrPsc, glial fibrillary acidic protein (GFAP) and reactive microglia were immunolabelled by specific antibodies. Furthermore, co-location studies using confocal microscopy were performed to determine the possible relationships between both types of glial cells in all samples. RESULTS: The results presented in this study support the involvement of both types of glial cells in CJD. Evidence of increased astrocyte and microglia reactivity can be observed in all CJD cases, and a close relationship between the types of glia is demonstrated by co-location studies. CONCLUSION: Proteinopathies such as Alzheimer, Parkinson, and Huntington diseases, where aberrant proteins spread throughout the brain during disease progression, may share a molecular basis and mechanisms of propagation. Therefore, studies elucidating the interaction between gliosis and prion propagation may be relevant to these other neurodegenerative diseases and may provide new targets for therapeutic intervention.


Subject(s)
Astrocytes/pathology , Cerebellum/pathology , Creutzfeldt-Jakob Syndrome/pathology , Glial Fibrillary Acidic Protein/analysis , Microglia/pathology , Prion Diseases/pathology , Aged , Aged, 80 and over , Female , Humans , Male , Microscopy, Confocal , Middle Aged , Reference Values , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...